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Abstract. Predictions for the electromagnetic form factors of the Λ, Σ and Ξ hyperons are presented. The
numerical calculations are performed within the framework of the fully relativistic constituent-quark model
developed by the Bonn group. The computed magnetic moments compare favorably with the experimentally
known values. Most magnetic form factors GM (Q2) can be parameterized in terms of a dipole with cutoff
masses ranging from 0.79 to 1.14 GeV.
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1 Introduction

Ever since the pioneering work by Murray Gell-Mann [1,2],
Yuval Ne’eman [3] and George Zweig [4,5], the concept
of constituent quarks (CQ) has become well accepted in
hadronic physics. To date, constituent quarks are the ef-
fective degrees of freedom in many existing models for
hadrons. They do not represent, however, the fundamen-
tal degrees of freedom of the theory of strong interactions,
quantum chromodynamics (QCD). Usually, one connects
the effective and fundamental degrees of freedom by not-
ing that constituent quarks are conglomerates of quarks,
antiquarks and gluons, such that the quantum numbers of
the composed hadron depend only on those of the con-
glomerate. Thereby, one presumes that the quark and
gluon degrees of freedom can be efficiently described by
means of constituent quarks in the energy domain where
the full QCD equations cannot be solved perturbatively.
This procedure results in equations that are admittedly
easier to handle than those obtained within the frame-
work of nonperturbative QCD, but still carry all the com-
plications connected with the (relativistic) treatment of
a two- and three-body problem. The major justification
for CQ models is their effectiveness in describing hadron
spectra, symmetry properties and electromagnetic form
factors. This work will focus on the latter quantities.

Meson photoproduction and scattering are primary
tools to gain a deeper insight into the dynamics of baryon
resonances. Fair descriptions of these data can be reached
within the framework of isobar models. These models typ-
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ically adopt hadrons and their resonances as effective de-
grees of freedom. Their finite size is modeled through the
introduction of hadronic and electromagnetic form fac-
tors. With the eye on optimizing the agreement between
calculations and data, the cutoff masses entering the form
factors and the coupling constants are often treated as
parameters. The underlying philosophy is that the fit-
ted values can subsequently be compared to predictions
from more fundamental models which explicitly account
for the hadron substructure and dynamics. On the other
hand, the coupling constants, computed in CQ models,
could serve as input parameters into isobar descriptions
of meson photoproduction processes, thereby establishing
a more direct link between models for hadron structure
and meson photoproduction and scattering experiments.

Attempts to describe meson production processes
within the framework of a CQ model include the following
ones. Zhao and Li et al. have used a (chiral) CQ model
for baryons and quark-meson couplings to describe, e.g.,
ω and η photoproduction on the proton [6,7]. Oh et al. [8]
have investigated the contributions of direct knockout,
diffractive and one-boson exchange processes in φ elec-
troproduction. In ref. [9], a diquark-quark model has been
used to calculate kaon photoproduction cross-sections. A
dynamical approach to predict πN scattering amplitudes
has been developed in refs. [10,11].

The work presented here finds its motivation in the
development of a consistent description of kaon produc-
tion processes p(γ,K+)Y and p(e, e′K+)Y [12–15], based
on CQ degrees of freedom. New data for these processes
have recently been released by the CLAS Collaboration at
Jefferson Laboratory [16], by the LEPS Collaboration at
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SPring-8 [17] and by the SAPHIR Collaboration at ELSA
in Bonn [18]. Also the GRAAL Collaboration in Greno-
ble [19] will provide extensive data sets for kaon photo-
production in the very near future. The abundant amount
of new data calls for an appropriate theoretical treatment
covering the complete data base. One of the major sources
of theoretical uncertainties when modeling p(e, e′K)Y re-
actions, is the Q2-dependence of the electromagnetic form
factors of the “strange” baryons [15]. In this work, theo-
retical predictions for these quantities will be presented.

In the resonance region, pion and eta photoproduc-
tion on the proton can be reasonably described within the
framework of isobar models. For the pion channel, this
success can be mainly attributed to the dominant role
of the ∆(1232)-resonance in the reaction dynamics. The
large coupling of this resonance to the πN decay channel
makes contributions of other reaction mechanisms seem
like rather small perturbations. A similar role is played by
the S11(1535)-resonance in η photo- and electroproduc-
tion. In comparison to π and η production, kaon photo-
and electroproduction are more difficult to treat, since
there is no obvious dominant reaction mechanism, but
several contributions compete. Furthermore, the thresh-
old for production of strange ss̄ pairs increases the energy
scale to a domain in which isobar models could be ex-
pected to start losing their validity. A CQ model could
provide an alternative approach, since its number of free
parameters remains low, no matter how many resonances
participate in the production mechanism. Also, CQs are
supposed to be smaller in size than the hadron they rep-
resent [20]. Therefore, CQ models are expected to be valid
up to larger energies and momentum transfers.

Many CQ approaches start off nonrelativistically and
require relativistic corrections at some point. This pro-
cedure of relativizing certain aspects of the model usu-
ally involves some degree of arbitrariness. The CQ model
which will be applied here, on the other hand, has been
developed by the Bonn group [21–24] and is relativisti-
cally covariant in its inception. Yet, at the same time,
it is linked to nonrelativistic models in a transparent way.
The latter feature arises from the use of the instantaneous
approximation and the CPT theorem which ensures that
we arrive at the same number of bound states as non-
relativistic models [21]. In addition, an extended version
of a harmonic-oscillator basis, which also serves as the
starting point of many nonrelativistic CQ models is used.
The Bonn CQ model is primarily based on the Bethe-
Salpeter approach [25]. The quantities of physical interest
can be obtained from integral equations which are solved
numerically. Thereby, some freedom exists with respect to
the plausible types of interactions between the constituent
quarks. Preserving Lorentz covariance, which is manda-
tory for describing boosts consistently, it is assumed that
the inter-quark forces do not depend on the components
of the variables parallel to the total four-momentum of
the baryon. In the rest frame, this means that the interac-
tions are instantaneous or, in other words, independent of
the energy components of the variables. This has the nu-
merical advantage of reducing the integrations from eight

to six dimensions when determining the Bethe-Salpeter
amplitudes. The relativistic CQ model developed in Bonn
adopts a typical linear confinement potential (Vconf) sup-
plemented by the ’t Hooft instanton-induced interaction
(VIII). This approach allows one to use merely seven free
parameters. They can be constrained by means of the mass
spectra of strange and nonstrange baryons [22,23].

Previous work on electromagnetic form factors using
the Bethe-Salpeter approach has been reported in ref. [26]
for mesons and in ref. [27] for nonstrange baryons. An ex-
cellent description of the lowest pseudoscalar- and vector-
meson elastic and transition form factors was obtained,
except for the pion isotriplet, where the outcome was rea-
sonable. The results on electromagnetic properties of the
nonstrange baryons and baryon resonances are in quanti-
tative agreement with the existing data up to the third res-
onance region (W ≤ 1.7 GeV). It should be stressed that
in many investigations, the covariant description of the
dynamics turned out to be of the utmost importance [28].

This work focuses on computing the electric and mag-
netic form factors of strange baryons, as well as the
electromagnetic form factors of the Σ0 → Λ transition.
In sect. 2, the Bethe-Salpeter (BS) formalism will be
sketched. We will then turn our attention to electromag-
netic form factors in sect. 3. The results of our numerical
calculations will be presented in sect. 4. Whenever pos-
sible, we will compare our predictions with experimental
data and previous CQ calculations.

2 Formalism

The Bethe-Salpeter (BS) formalism used in this work is
described in great detail in refs. [21] and [27]. Here, we
briefly recall its basic ingredients.

2.1 The Bethe-Salpeter equation (BSE)

In the model adopted here, the basic quantity describing
a baryon is the three-quark BS amplitude:

χP̄ ,a1,a2,a3
(x1, x2, x3) ≡

〈0|T (
Ψa1(x1)Ψa2(x2)Ψa3(x3)

)|P̄ 〉 , (1)

where T is the time-ordering operator acting on the
Heisenberg quark field operators Ψai

, and P̄ is the total
four-momentum of the baryon with P̄µP̄µ = M2. The ai

denote the quantum numbers in Dirac, flavor and color
space. The Fourier transform of the above quantity is de-
fined by

χP̄ ,a1,a2,a3
(x1, x2, x3) = e−iP̄ .XχP̄ (ξ, η)

≡ e−iP̄ .X

∫
d4pξ

(2π)4
d4pη

(2π)4
e−ipξ.ξe−ipη.ηχP̄ (pξ, pη) , (2)
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Fig. 1. The BS equation in a schematic form. Arrows represent quark propagators, the filled dot denotes an inverse propagator.

where the scalar product of two four-vectors is given by
the convention a·b = aµbµ = a0b0−a·b. The standard def-
inition of the Jacobi coordinates and momenta is adopted:




X = 1
3 (x1 + x2 + x3) ,

ξ = x1 − x2 ,

η = 1
2 (x1 + x2 − 2x3) ,

(3a)

and 


P = p1 + p2 + p3 ,

pξ = 1
2 (p1 − p2) ,

pη = 1
3 (p1 + p2 − 2p3) .

(3b)

From eq. (2) it becomes clear that the total momentum
P̄ of the baryon enters the definition of the BS amplitude
only parametrically and not as a variable, thereby natu-
rally obeying the symmetry requirement of translational
invariance.

The so-called BS amplitude χP̄ ≡ χP̄ (pξ, pη) is the so-
lution to the BS equation [25] which, in momentum space,
can be schematically written as

χP̄ = −iG0P̄

(
K

(3)

P̄
+ K̄

(2)

P̄

)
χP̄ . (4)

Here, the arguments and integrals over dummy arguments
have been dropped. Its Feynman-diagram analogue is de-
picted in fig. 1. This equation can be obtained from con-
sidering the six-point Green’s function, a quantity which
depends on the total four-momentum squared PµPµ and
possesses poles at the masses M2 of the 3-quark bound
states. The residue at these poles corresponds to the prod-
uct of the BS amplitude and its adjoint.

The quantity G0P̄ in eq. (4) is the direct product of
the dressed propagators of the three quarks:

G0P̄ (pξ, pη; p′ξ, p
′
η) = S1

F

(
1
3
P + pξ +

1
2
pη

)

⊗ S2
F

(
1
3
P − pξ +

1
2
pη

)
⊗ S3

F

(
1
3
P − pη

)

× (2π)4δ(4)
(
pξ − p′ξ

)
(2π)4δ(4)

(
pη − p′η

)
. (5)

These propagators are approximated by the propagators
of free constituent quarks. Therefore, we adopt the form

Si
F(pi) =

i

� pi − mi + iε
, (6)

where mi is the effective mass of the i-th constituent
quark. The quantity denoted by K

(3)

P̄
is the three-particle

irreducible interaction kernel. Further, K̄
(2)

P̄
is the sum

of two-particle irreducible interaction kernels, each mul-
tiplied by the inverse of the propagator of the spectator
quark:

K̄
(2)

P̄

(
pξ, pη; p′ξ, p

′
η

)
= K

(2)

( 2
3 P+pη)

(
pξ, p

′
ξ

)

⊗
[
S3

F

(
1
3
P − pη

)]−1

× (2π)4δ(4)
(
pη − p′η

)
+ cycl. perm. in quarks (123) . (7)

In the case of instantaneous forces, K
(3)

P̄
and K

(2)
pi+pj

are
independent of the component of the Jacobi momenta par-
allel to the baryon four-momentum P̄ , as was already dis-
cussed in sect. 1. In the c.o.m. frame, this condition implies
that there is no dependence on the energy components:

K
(3)
P

(
pξ, pη; p′ξ, p

′
η

) ∣∣∣∣
P=(M,0)

=V (3)
(
pξ,pη; p′

ξ,p
′
η

)
, (8a)

K
(2)

( 2
3 P+pη)

(
pξ, p

′
ξ

) ∣∣∣∣
P=(M,0)

=V (2)
(
pξ,p

′
ξ

)
. (8b)

We should mention here that whenever a quantity is to be
evaluated in the rest frame of the baryon, we will indicate
this by the index M , to make it clear that in this case
P̄ = (M,0).

The potentials used in our calculations are those of
model A of ref. [22]. The three-particle interaction is given
by a confinement potential V

(3)
conf which rises linearly with

the sum of the distances between the three CQs. The two-
particle residual interaction is the ’t Hooft Instanton In-
duced Interaction V

(2)
III , which acts between pairs of quarks

that have antisymmetric spin, flavor and color wave func-
tions.

2.2 Reduction to the Salpeter equation

Solving eq. (4) can be simplified by exploiting the instan-
taneous property of the interaction kernels. Indeed, the
integration over the energy components of the Jacobi mo-
menta can be performed analytically. This gives rise to
a new object ΦM , the Salpeter amplitude, which can be
directly obtained from the full BS amplitude :

ΦM (pξ,pη) =
∫ dp0

ξ

(2π)
dp0

η

(2π)
χM

(
(p0

ξ ,pξ), (p0
η,pη)

)
. (9)

This definition is only workable in the special case that no
genuine two-particle irreducible interactions contribute,
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Fig. 2. The reconstruction of the BS amplitude from the vertex function according to eq. (16).

e.g. for the decuplet baryons which have symmetric spin
wave functions. For the octet baryons, approximations are
needed, as is explained in the appendix of ref. [27] and in
ref. [21]. There, it is pointed out that for reconstructing the
Bethe-Salpeter amplitude (1), it suffices to compute the
projection of the Salpeter amplitude (9) onto the purely
positive-energy and negative-energy states. This can be
accomplished in the standard manner by introducing the
energy projection operators:

Λ±
i (pi) =

ωi (pi) 1I ± Hi (pi)
2ωi (pi)

, (10)

where ωi(pi) =
√

m2
i + |pi|2 denotes the energy and

Hi(pi) = γ0(γ · pi + mi) (11)

is the free Hamiltonian of the i-th quark. With the above
definition, we define the projected Salpeter amplitude as

ΦΛ
M (pξ,pη) =

(
Λ+++ (pξ,pη) + Λ−−− (pξ,pη)

)

×
∫ dp0

ξ

(2π)
dp0

η

(2π)
χM

(
(p0

ξ ,pξ), (p0
η,pη)

)
, (12)

where Λ+++ (pξ,pη) = Λ+
1 (p1) ⊗ Λ+

2 (p2) ⊗ Λ+
3 (p3) and

Λ−−− (pξ,pη) = Λ−
1 (p1) ⊗ Λ−

2 (p2) ⊗ Λ−
3 (p3).

The Salpeter equation is now given by

ΦΛ
M (pξ,pη) =

[
Λ+++ (pξ,pη)

M − Ω (pξ,pη) + iε

+
Λ−−− (pξ,pη)

M + Ω (pξ,pη) − iε

]
γ0 ⊗ γ0 ⊗ γ0

×
∫ d3p′ξ

(2π)3
d3p′η
(2π)3

V (3)
(
pξ,pη; p′

ξ,p
′
η

)
ΦΛ

M

(
p′

ξ,p
′
η

)

+
[

Λ+++ (pξ,pη)
M − Ω (pξ,pη) + iε

− Λ−−− (pξ,pη)
M + Ω (pξ,pη) − iε

]

×
∫ d3p′ξ

(2π)3

[[
γ0 ⊗ γ0V (2)

(
pξ,p

′
ξ

)] ⊗ 1I
]
ΦΛ

M

(
p′

ξ,pη

)

+ cycl. perm. in quarks (123) , (13)

where Ω (pξ,pη) is the sum of the energies of the three
constituent quarks:

Ω =
3∑

i=1

ωi =
3∑

i=1

√
|pi|2 + m2

i . (14)

Once the Salpeter equation (13) is solved, the vertex func-
tion ΓΛ

M can be constructed:

ΓΛ
M (pξ,pη) = −i

∫ d3p′ξ
(2π)3

d3p′η
(2π)3

[
V

(3)
Λ

(
pξ,pη; p′

ξ,p
′
η

)

+ V eff(1)

M

(
pξ,pη; p′

ξ,p
′
η

)]
Φ

Λ,(1)
M

(
p′

ξ,p
′
η

)
. (15)

This vertex function describes how the three CQs couple
to form a baryon, and in first order can be related to the
BS amplitude through

χP̄ ≈ χ
(1)

P̄
=

[
G0P̄

(
V

(3)
R + K̄

(2)

P̄
− V eff(1)

P̄

)
G0P̄

]
ΓΛ

P̄ ,

(16)
of which a diagram is shown in fig. 2.

In eqs. (15) and (16), V
(3)
Λ = Λ̄V

(3)
R Λ, where Λ̄ =

γ0 ⊗ γ0 ⊗ γ0Λγ0 ⊗ γ0 ⊗ γ0, is that part of the three-
body potential which couples only to purely positive-
energy and negative-energy components of the ampli-
tudes. V

(3)
R = V (3) − V

(3)
Λ is the remaining part which

couples to the mixed-energy components. V eff(1)

P̄
is a first-

order approximation of an effective potential with three-
body structure which parameterizes the two-body interac-
tion [21,27]. Further, K̄

(2)

P̄
is defined in eqs. (7) and (8b).

2.3 Current matrix elements

Once the BS amplitudes and vertex functions have been
determined, the current matrix elements can be computed
through the following definition:

〈P̄ |jµ(x)|P̄ ′〉 = 〈P̄ |Ψ̄(x)q̂γµΨ(x)|P̄ ′〉 , (17)

where Ψ and q̂ are the constituent-quark field and charge
operator. The above matrix element can be expressed in
terms of the objects defined in sects. 2.1 and 2.2. Via the
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Fig. 3. Feynman diagram showing the coupling of the photon to the third CQ as in eq. (18). The other two CQs are spectators.

calculation of the six-point and eight-point Green’s func-
tions and residue arguments, it can be shown that in the
c.o.m. frame of the incoming baryon [27]

〈P̄ |jµ(0)|M〉 � −3
∫

d4pξ

(2π)4
d4pη

(2π)4

× Γ̄Λ
P̄

(
pξ, pη − 2

3
q

)
S1

F

(
1
3
M + pξ +

1
2
pη

)

⊗ S2
F

(
1
3
M − pξ +

1
2
pη

)
⊗ S3

F

(
1
3
M − pη + q

)

× q̂γµS3
F

(
1
3
M − pη

)
ΓΛ

M (pξ,pη) , (18)

where q is the (incoming) photon four-momentum and q̂
is the charge operator working on the third CQ only. Fur-
ther, Γ̄Λ

P̄
is the adjoint vertex function and is calculated

in the c.o.m. system according to

Γ̄Λ
M = − (

ΓΛ
M

)†
γ0 ⊗ γ0 ⊗ γ0 . (19)

Under a Lorentz boost, the vertex function transforms
as [24]

ΓP̄

(
pξ, pη − 2

3
q

)
=

S1
Λ ⊗ S2

Λ ⊗ S3
ΛΓΛ−1P̄

(
Λ−1pξ, Λ

−1

(
pη − 2

3
q

))
, (20)

with Λ the boost matrix and Si
Λ the corresponding boost

operator acting on the i-th quark. Equation (18) is a con-
sistent lowest-order approximation of the current matrix
element. We refer to refs. [24] and [27] for more details and
to fig. 3 for a schematic representation of eq. (18). The in-
tegration over the energy variables can be performed an-
alytically. In the remaining integral over pξ and pη, the
azimuthal dependence can be reduced to (φξ−φη), leaving
one with five-dimensional integrals, which are computed
numerically.

3 Form factors

In sect. 4, results for the elastic and transition electromag-
netic form factors of the octet baryons with a nonvanishing
strangeness quantum number will be presented. Here, we
briefly discuss our conventions regarding the connection
between form factors and current matrix elements.

3.1 Elastic form factors

The strength with which real and virtual photons couple
to baryons can be quantified in different ways. For the
elastic processes, where the incoming and the outgoing
baryon are identical, we will compute the Sachs form fac-
tors. We define the vertex function Γµ between a baryon
and a photon as

〈B, P̄ ′, λ′|jµ(0)|B, P̄ , λ〉 = eūλ′(P̄ ′)Γµuλ(P̄ )

= eūλ′(P̄ ′)
[
γµFB

1 (Q2) +
iσµνqν

2M
FB

2 (Q2)
]
uλ(P̄ ) , (21)

where B denotes the baryon under investigation, λ(′) the
baryon helicity, P̄ (′) the baryon on-shell four-momentum
and uλ(P̄ ) a Dirac spinor, normalized according to

ūλ′(P̄ )uλ(P̄ ) = 2Mδλλ′ . (22)

The functions FB
1 and FB

2 are the Dirac and Pauli form
factors and depend only on Q2 = −q2, where q is the four-
momentum carried by the photon. The Sachs form factors
are defined in the standard fashion,

GB
E(Q2) = FB

1 (Q2) − Q2

4M2
FB

2 (Q2) , (23a)

GB
M (Q2) = FB

1 (Q2) + FB
2 (Q2) . (23b)

The equations connecting the Sachs form factors to the
current matrix elements in the rest frame of the incoming
baryon read

GB
E(Q2) =

〈B, P̄ ′, 1
2 |j0(0)|B, M̄, 1

2 〉√
4M2 + Q2

, (24a)

GB
M (Q2) =

〈B, P̄ ′, 1
2 |j+(0)|B, M̄,− 1

2 〉
2
√

Q2
. (24b)

Measurements of the magnetic moments for the
strange baryons represent a direct test of the calculations
which will be presented here. These values should be com-
pared to the values of the magnetic Sachs form factors at
Q2 = 0. From the slope of the form factors at Q2 = 0, the
electric and magnetic mean-square radii of the baryons
can be deduced from

〈r2〉 = −6
1

G(0)
dG(Q2)

dQ2

∣∣∣∣
Q2=0

, (25)
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if the form factor does not go to zero for Q2 → 0, and

〈r2〉 = −6
dG(Q2)

dQ2

∣∣∣∣
Q2=0

, (26)

if the form factor vanishes at Q2 = 0. Two recent mea-
surements at CERN [29] and Fermilab [30] provided the
first values for the electric mean-square radius of the Σ−
hyperon. To our knowledge, the Σ− is the only hyperon
for which such information is presently available.

3.2 Transition form factors

When describing electromagnetic transitions at vertex le-
vel, at a certain point, one is forced to make a choice
as to what operatorial form to use. The only condition
which should be obeyed is the Ward identity qµΓµ = 0. A
general form for the vertex function for spin-(1/2) baryons
corresponding with γ∗ + B∗ −→ B transitions, is

Γµ = FB∗B
1 (Q2)

(
γµ +

qµqν

Q2
γν

)

+
FB∗B

2 (Q2)κB∗B

2Mp
iσµνqν , (27)

with Mp the proton mass, FB∗B
1 (Q2) and FB∗B

2 (Q2) the
two transition form factors, belonging to parts of the ver-
tex that obey the Ward identity individually, and κB∗B

the transition magnetic moment in units of the nuclear
magneton µN . In the rest frame of the incoming baryon
B∗, we get the following equations for the transition form
factors:

eFB∗B
1 (Q2) =

Q2

Q+
√

Q−

×
[
M + M∗

|P ′| M0 − 1
2
M+

]
, (28a)

eκB∗BFB∗B
2 (Q2)

2Mp
=

−1
Q+

√
Q−

×
[

Q2

|P ′|M0+
M +M∗

2
M+

]
, (28b)

with M∗ and M the mass of incoming and outgoing
baryons, respectively, |P ′| the magnitude of the three-
momentum of the outgoing baryon, Q± = Q2+(M∗±M)2
and

M0 =
〈

B, P̄ ′,
1
2

∣∣∣∣j0(0)
∣∣∣∣B∗, M̄∗,

1
2

〉
, (29a)

M+ =
〈

B, P̄ ′,
1
2

∣∣∣∣ (−j1(0) − i.j2(0)
) ∣∣∣∣B∗, M̄∗,−1

2

〉
.

(29b)

Hereby, we have implicitly adopted the axial gauge
ε · q = 0, where ε is the photon polarization three-vector.

With these definitions for the transition form factors,
FB∗B

1 (0) gives the transition charge and κB∗B is the tran-
sition magnetic moment, since FB∗B

2 (0) = 1 by conven-
tion.
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Fig. 4. Calculated magnetic (top) and electric (bottom) form
factors of the Λ and Σ0 hyperons. The dot-dashed curves are
the predictions from ref. [31].

4 Results

In this section, results for the computed electric and mag-
netic form factors of the strange particles belonging to the
baryon octet will be presented. We will discuss the elas-
tic and the Σ0 → Λ transition form factors. Comparisons
with other calculations will be made. In ref. [31], Kim et
al. present calculations for the elastic form factors of the
ground-state octet baryons up to Q2 = 1.0 GeV2 within
the framework of the chiral quark/soliton model. Kubis
et al. have computed electric and magnetic form factors
of the hyperons for Q2 < 0.2 GeV2 in the framework of
heavy-baryon chiral perturbation theory (HB) in ref. [32]
and later extended their model to fourth order [33] to
recalculate the electric form factors of the baryon octet
and the Σ0 → Λ transition form factor FB∗B

1 (Q2) for
Q2 < 0.3 GeV2. In the same article, relativistic baryon
chiral perturbation employing infrared regulators (IR) is
used and shown to have predictive value. Since these in-
vestigations are confined to small values for Q2, we will
only compare our results for the magnetic moments (ta-
ble 1) and the mean-square radii (table 2) with the HB
and IR results. We will also confront our predictions with
those presented in ref. [34], where results are shown of CQ
calculations based on a Goldstone-boson exchange (GBE)
quark-quark interaction [35,36] and a one-gluon exchange
(OGE) interaction [37,38].

In fig. 4, our results for the neutral single-strange
baryons are displayed. The computed Q2-dependence of
the magnetic form factors of the Σ0 and Λ hyperons nicely
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Table 1. Magnetic moments of strange baryons in units of µN . The notation GBE/OGE (HB/IR) refers to the two different
models discussed in ref. [34] ([33]). In ref. [33], only the transition magnetic moment for Σ0 → Λ is a real prediction. Experimental
values are taken from ref. [40], except for µΣ0 = (µΣ+ +µΣ−)/2, for which isospin invariance is used. For the Σ0 → Λ transition,
the absolute value is given.

Baryon µexp
Y µcalc

Y µ
[31]
Y µ

[34]

Y (GBE/OGE) µ
[33]

Y (HB/IR)

Λ0(1116) −0.613 ± 0.004 −0.61 −0.77 −0.59/ − 0.59 exp.
Σ+(1189) 2.458 ± 0.010 2.47 2.42 2.34/2.20 exp.
Σ0(1189) 0.649 0.73 0.75 0.70/0.66 exp.
Σ−(1189) −1.160 ± 0.025 −0.99 −0.92 −0.94/ − 0.89 exp.
|Σ0 → Λ| 1.61 ± 0.08 1.41 1.51 – 1.46/1.61
Ξ0(1315) −1.250 ± 0.014 −1.33 −1.64 −1.27/ − 1.27 exp.
Ξ−(1315) −0.6507 ± 0.0025 −0.57 −0.68 −0.67/ − 0.57 exp.

Table 2. Magnetic mean-square radii of strange baryons in
units of fm2. All magnetic form factors resemble dipoles, except
for the Σ−, and our fitted value for the cutoff mass is given.
The notation HB/IR refers to the two models presented in
ref. [33].

Baryon 〈r2
M 〉calc 〈r2

M 〉[31] 〈r2
M 〉[33](HB/IR) ΛM (GeV)

Λ0(1116) 0.40 0.70 0.30/0.48 1.14

Σ+(1189) 0.69 0.71 0.74/0.80 0.79

Σ0(1189) 0.60 0.70 0.20/0.45 0.88

Σ−(1189) 0.81 0.74 1.33/1.20 –

Σ0 → Λ 1.96 – 0.60/0.72 0.82

Ξ0(1315) 0.47 0.75 0.44/0.61 0.94

Ξ−(1315) 0.38 0.51 0.44/0.50 1.03

follows that of a dipole,

G(Q2) =
G(0)(

1 + Q2

Λ2

)2 , (30)

with cutoff masses ΛM = 0.88 GeV and 1.14 GeV, respec-
tively (table 2). Their values at Q2 = 0 are the magnetic
moments µΣ0 = 0.73 and µΛ = −0.61 in units of the
nuclear magneton µN , which are very realistic (table 1).
The electric form factors in the bottom panel of fig. 4 have
the opposite sign in comparison with the neutron electric
form factor. This can be attributed to the heavier s-quark
in the hyperons, which has a higher probability of residing
near the center of mass of the hyperon, making the elec-
tric density negative at small r, whereas it is positive for
the neutron [39]. The predicted negative values for GE for
the Σ0 and Λ, are in contradiction with the results from
refs. [31] and [33]. Kim et al. predict a positive GE for the
Λ and Kubis et al. predict a negative mean-square radius
for the Σ0 hyperon (table 3). It should also be noted that
for neutral hyperons, our results for the electric form fac-
tors are about a factor of five larger in magnitude than
those of ref. [31]. This suggests that in our model, there
is a higher charge density near the center of mass of the
neutral hyperon than in the chiral quark/soliton model.

Our predictions for the charged single-strange baryons
Σ± are shown in fig. 5. Again, the results for the mag-
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Fig. 5. Calculated magnetic and electric form factors of the
Σ+ and Σ− hyperons. The dot-dashed curves are the predic-
tions from ref. [31].

netic moments µΣ+ = 2.47 µN and µΣ− = −0.99 µN are
in excellent agreement with experiment (table 1). Whilst
the magnetic form factor of the Σ+ resembles a dipole
with cutoff ΛM = 0.79 GeV, the one for the Σ− drops
relatively fast and even changes sign at Q2 ≈ 1.6 GeV, re-
maining small at high Q2. A similar qualitative behavior
is observed for the electric form factor of the Σ+, changing
sign at Q2 ≈ 1.1 GeV2. For Q2 > 2.6 GeV2, the form fac-
tors of Σ+ and Σ− become practically indistinguishable.
Inspecting fig. 5, it is clear that our predictions for the
magnetic form factors agree remarkably well with those of
the chiral quark/soliton model at low values of Q2 [31].

To our knowledge, for the electric mean-square radius
of the Σ− hyperon, the following experimental values are
presently available:

〈r2
E〉Σ− = 0.60 ± 0.08 (stat.) ± 0.08 (syst.) fm2 (31)
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Table 3. Electric mean-square radii of strange baryons in units of fm2. The same conventions as in tables 1 and 2.

Baryon 〈r2
E〉exp 〈r2

E〉calc 〈r2
E〉[31] 〈r2

E〉[33](HB/IR) 〈r2
E〉[34](GBE/OGE) ΛE (GeV)

Λ0(1116) – 0.038 −0.04 0.00/0.11 – –
Σ+(1189) – 0.79 0.79 0.72/0.60 – –
Σ0(1189) – 0.150 0.02 −0.08/ − 0.03 – –

Σ−(1189) 0.60[30]/0.91[29] 0.49 0.75 0.88/0.67 0.49/0.44 0.93
Σ0 → Λ – −0.120 – −0.09/0.03 – –
Ξ0(1315) – 0.140 −0.06 0.08/0.13 – –
Ξ−(1315) – 0.47 0.72 0.75/0.49 – 0.93
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Fig. 6. Calculated magnetic and electric form factors of the
Ξ0 hyperon. The dot-dashed curves are the predictions from
ref. [31].

from ref. [30], and

〈r2
E〉Σ− = 0.91 ± 0.32 (stat.) ± 0.40 (syst.) fm2 (32)

from ref. [29]. Our prediction 〈r2
E〉Σ− = 0.49 fm2 (table 3)

is compatible with both these values.
The experimental information regarding the Ξ dou-

blet is scarce. To complete the description of ground-state
hyperons, we have calculated its elastic form factors. The
form factors of the Ξ0 are displayed in fig. 6. The GE(Q2)
changes sign about Q2 = 3.0 GeV2 and GM (Q2) can be
nicely fitted with a dipole with ΛM = 0.94 GeV and mag-
netic moment µΞ0 = −1.33 µN . Again, this value for
µΞ0 is in good agreement with the experimentally deter-
mined value (table 1). The Ξ− exhibits dipole-like be-
havior in both GE(Q2) and GM (Q2) (fig. 7) with cutoffs
ΛE = 0.93 GeV and ΛM = 1.03 GeV, respectively. Our
prediction for the magnetic moment, µΞ− = −0.57 µN , is
close to the experimental value −0.6507± 0.0025 µN [40].
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Fig. 7. Calculated magnetic and electric form factors of the
Ξ− hyperon. The dot-dashed curves are the predictions from
ref. [31].

As is the case for the Λ hyperon, the calculations of
ref. [31] predict a different sign and a smaller magnitude
for the electric form factor of the neutral state of the Ξ
doublet, but the other results agree very well.

The last point of our discussion concerns the form fac-
tors related to the γ∗ + Σ0 → Λ transition. We show the
two form factors FΣΛ

1 (Q2) and FΣΛ
2 (Q2) in fig. 8, cal-

culated with eqs. (28). The only link with experiment is
the transition magnetic moment |µΣΛ| = 1.61 ± 0.08 µN

from [40]. Our calculated value of |µΣΛ| = 1.41 µN is
about 15% off, but still reasonable considering the rela-
tively large experimental error.

5 Conclusions

In this work, the first results of an extended implemen-
tation of the Bonn relativistic constituent-quark model
into electromagnetic properties of the strangeness sector
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Fig. 8. The transition form factors of the γ∗ + Σ0 → Λ decay
as defined in eq. (28).

have been presented. Electromagnetic form factors for the
low-lying hyperons have been computed. Comparison with
experimentally determined values is possible for the mag-
netic moments and the electric mean-square radius of the
Σ− hyperon. A nice agreement between our predictions
and the data is observed. The predicted Q2-dependence
of the form factors is essential information when model-
ing kaon electroproduction processes within an isobar (or,
hadrodynamic) framework [15]. As illustrated in sect. 4,
to date the different hadron models do not even agree on
the sign of the electric form factors of neutral hyperons.
Some form factors have been observed to change sign at
finite Q2 values.

Work on calculating helicity amplitudes of known and
missing hyperon resonances is in progress. We intend to
conduct an elaborate investigation of strong decay widths
of baryon resonances into the KY channels. In this way we
hope to identify, on the basis of quark-quark dynamics, the
most important intermediate baryon resonances in kaon
photo- and electroproduction reactions.
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